✍️ 🧑‍🦱 💚 Autor:innen verdienen bei uns doppelt. Dank euch haben sie so schon 233.708 € mehr verdient. → Mehr erfahren 💪 📚 🙏

The Geometry of Domains in Space

von Harold R. Parks und Steven G. Krantz
Softcover - 9781461271994
53,49 €
  • Versandkostenfrei
Auf meine Merkliste
  • Hinweis: Print on Demand. Lieferbar in 2 Tagen.
  • Lieferzeit nach Versand: ca. 1-2 Tage
  • inkl. MwSt. & Versandkosten (innerhalb Deutschlands)

Weitere Formate

Hardcover - 9780817640972
53,49 €

Autorenfreundlich Bücher kaufen?!

Weitere Formate

Hardcover - 9780817640972
53,49 €

Beschreibung

The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.

Details

Verlag Birkhäuser Boston
Ersterscheinung Oktober 2012
Maße
Gewicht 562 Gramm
Format Softcover
ISBN-13 9781461271994
Auflage Softcover reprint of the original 1st ed. 1999
Seiten 309